Generalized Stirling permutations, families of increasing trees and urn models

نویسندگان

  • Svante Janson
  • Markus Kuba
  • Alois Panholzer
چکیده

Bona [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bona. Here we will consider generalized Stirling permutations extending the earlier results of [6], [18], and relate them with certain families of generalized plane recursive trees, and also (k + 1)-ary increasing trees. We also give two different bijections between certain families of increasing trees, which both give as a special case a bijection between ternary increasing trees and plane recursive trees. In order to describe the (asymptotic) behaviour of the parameters of interests, we study three (generalized) Pólya urn models using various methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Statistics for Generalized Stirling Permutations

In this work we give a study of generalizations of Stirling permutations, a restricted class of permutations of multisets introduced by Gessel and Stanley [15]. First we give several bijections between such generalized Stirling permutations and various families of increasing trees extending the known correspondences of [20, 21]. Then we consider several permutation statistics of interest for ge...

متن کامل

Plane Recursive Trees, Stirling Permutations and an Urn Model

We exploit a bijection between plane recursive trees and Stirling permutations; this yields the equivalence of some results previously proven separately by different methods for the two types of objects as well as some new results. We also prove results on the joint distribution of the numbers of ascents, descents and plateaux in a random Stirling permutation. The proof uses an interesting gene...

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

Generalized Stirling Permutations and Forests: Higher-Order Eulerian and Ward Numbers

We define a new family of generalized Stirling permutations that can be interpreted in terms of ordered trees and forests. We prove that the number of generalized Stirling permutations with a fixed number of ascents is given by a natural three-parameter generalization of the well-known Eulerian numbers. We give the generating function for this new class of numbers and, in the simplest cases, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011